
J Sign Process Syst
DOI 10.1007/s11265-008-0169-7

Analysis and Hardware Architecture Design of Global
Motion Estimation

Yi-Hau Chen · Shao-Yi Chien · Ching-Yeh Chen ·
Yu-Wen Huang · Liang-Gee Chen

Received: 28 March 2006 / Revised: 3 March 2008 / Accepted: 3 March 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in the United States

Abstract Global motion estimation and compensation
(GME/GMC) is an important video processing tech-
nique and has been applied to many applications in-
cluding video segmentation, sprite/mosaic generation,
and video coding. In MPEG-4 Advanced Simple Profile
(ASP), GME/GMC is adopted to compensate camera
motions. Since GME is important, many GME algo-
rithms have been proposed. These algorithms have
two common characteristics, huge computation com-
plexity and ultra large memory bandwidth. Hence for
realtime applications, a hardware accelerator of GME
is required. However, there are many hardware de-
sign challenges of GME like irregular memory access

Y.-H. Chen · S.-Y. Chien · C.-Y. Chen
Y.-W. Huang · L.-G. Chen
DSP/IC Design Lab., Graduate Institute of Electronics
Engineering and Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan

Y.-H. Chen
e-mail: ttchen@video.ee.ntu.edu.tw

C.-Y. Chen
e-mail: cychen@video.ee.ntu.edu.tw

Y.-W. Huang
e-mail: yuwen@video.ee.ntu.edu.tw

L.-G. Chen
e-mail: lgchen@video.ee.ntu.edu.tw

S.-Y. Chien (B)
Room 540, Department of Electrical Engineering II,
National Taiwan University, 1, Sec. 4, Roosevelt Rd.,
Taipei 10617, Taiwan
e-mail: sychien@cc.ee.ntu.edu.tw

and huge memory bandwidth, and only few hardware
architectures have been proposed. In this paper, we
first analyzed three typical algorithms of GME, and a
fast GME algorithm is proposed. By using temporal
prediction and skipping the redundant computation,
91% memory bandwidth and 80% iterations are saved,
while the performance is kept, compared to Gradient
Descent in MPEG-4 Verification Model. Based on our
proposed algorithm, a hardware architecture of GME
is also presented. A new scheduling, Reference-Based
Scheduling, is developed to solve the irregular memory
access problem. An interleaved memory arrangement
is applied to satisfy the memory access requirement
of interpolation. The total gate count of hardware
implementation is 131 K with Artisan 0.18 um cell
library, and the internal memory size is about 7.9 Kb.
Its processing ability is MPEG-4 ASP@L3, which is
352×288 with 30 fps, at 30 MHz.

Keywords VLSI architecture · MPEG-4 ·
Global motion estimation · Global motion

1 Introduction

Global motion and local motion are two types of mo-
tions in a video sequence. The former is camera mo-
tion, and the latter is the motion of individual objects.
Global motion estimation (GME) is to find the global
motion between two frames and use only a small set of
parameters [1], global motion parameters, to describe
the motion instead of many local motion vectors, as
shown in Fig. 1. Global motion model is a set of global
motion parameters with physical meanings and is used
to describe the camera motions including scaling, rota-

Y.-H. Chen et al.

Warping by global

motion parameters
(x ,y)

(x, y)

Figure 1 The deformation between two frames with affine
model, where m0 = 0.8, m1 = 0.1, m2 = 10, m3 = 0.3, m4 = 1.05,
and m5 = −30.

tion, and translation. Many global motion models have
been proposed, such as perspective, affine, isotropic,
and translation models. For example, the affine
model is

x′ = m0x + m1 y + m2, (1)

y′ = m3x + m4 y + m5, (2)

where (x, y) is the position of current pixel in current
frame, (x′, y′) is the corresponding position of current
pixel in the reference frame, and (m0, m1, m2, m3, m4,

m5) are global motion parameters, where m0 and m4

are scaling factors, m1 and m3 are shear factors, and
m2 and m5 are translation factors in x and y directions,
respectively. Figure 1 shows the deformation between
two frames with affine model, where m0 = 0.8, m1 =
0.1, m2 = 10, m3 = 0.3, m4 = 1.05, and m5 = −30.

Global motion estimation and compensation (GME/
GMC) plays an important role in many applications.
For example, in image stabilizers, GME/GMC is ad-
opted to estimate and compensate the camera motions
[2–4]. The consistency between global motion and local
motion of a macroblock is used to be the criterion in
video segmentation [5–7]. MPEG-7 [8, 9] also has many
descriptors about camera motions and global motions.
In the applications of video coding, GME/GMC is the
core technology of sprite/mosaic coding [10–14], and
GME/GMC is also adopted in MPEG-4 Advanced Sim-
ple Profile (ASP) [15]. MPEG-4 ASP is undoubtedly a
powerful video coding standard. It can save 50% bit-
rate compared to MPEG-4 Simple Profile, which is be-
cause several advanced motion compensation tools are
included in MPEG-4 ASP, and one of them is GME/
GMC [16–19].

Since GME/GMC becomes an important video
processing tool, many GME algorithms [18, 20] have
been proposed. They can be classified into three types
[21]: Feature-Point Based Algorithms [22], Differential-
Technique Algorithms [10, 23, 24], and Frame-Matching
Algorithms [25, 26]. In Feature-Point Based Algorithms,

some feature points are selected to represent the whole
frame. By motion vectors of these feature points,
global motion parameters are derived. In Differential-
Technique Algorithms, Taylor series are applied to
expand a criterion function, which is used to calcu-
late global motion parameters. On the other hand,
in Frame-Matching Algorithms, the whole frame is
matched with all possible global motion parameters
to select the optimal one. The detailed analysis and
comparison of these three algorithms will be shown in
Section 2.

A hardware accelerator of GME is necessary for
real-time applications, such as, MPEG-4 ASP encoders
[27]. However, the hardware design of GME is a chal-
lenged research topic because of the characteristics of
GME. First, there are two common characteristics in
GME algorithms. One is huge computation complexity,
and the other is ultra large memory bandwidth. For
example, Gradient Descent [23, 28] takes 35 GIPS
in computation complexity and 340 MB/s in memory
bandwidth at CIF Format, 30 fps. These two character-
istics increase the complexity of hardware implemen-
tation for GME. The second problem is that because
scaling and rotation are supported in global motions,
irregular memory access of GME is inevitable. It se-
riously affects the hardware utilization without careful
design. Thirdly, four neighboring reference pixels have
to be accessed for one current pixel. Then, the memory
arrangement needs to be designed well in order to
satisfy the memory access requirement. Up to now,
there are fewer algorithms suitable for hardware imple-
mentation, and fewer hardware architectures [27, 29]
are proposed.

In this paper, we first analyze the performances of
different GME algorithms and propose a fast GME
algorithm which is suitable for hardware implementa-
tion in Section 2. Next, the coding performances of
GME/GMC mode with different global motion mod-
els in MPEG-4 ASP are compared in Section 3. In
Section 4, a GME hardware architecture is proposed,
and it can solve the above-mentioned problems. Finally,
the results of hardware implementation are shown in
Section 5, and a conclusion is given in Section 6.

2 GME Algorithms

In this section, we introduce three types of GME al-
gorithms, and their performances are also discussed.
Next, based on these analyses, we propose a fast GME
algorithm, Avoid Redundant Computation Gradient
Descent (ARC-Gradient Descent).

Analysis and hardware design of global motion estimation

Figure 2 The flow chart
of a N-D diamond search;
b Gradient Descent
in MPEG-4 VM;
c Feature-point based
algorithm.

Low Pass Filter
Downsample

Cur. frame Ref. frame

Low Pass Filter
Downsample

N-D Diamond
Search

N-D Diamond
Search

N-D Diamond
Search

3-tap-filter
Downsample

Cur. frameRef. frame

3-tap-filter
Downsample

Gradient
-Descent

Gradient
-Descent

Gradient
-Descent

Initial-Matching

Hessian
(Feature Point)

Local Motion
Estimation

Regression

Converge No

Yes

Ref. frame Cur. frame

a b c

2.1 Frame-Matching Algorithms

Frame-Matching Algorithms are similar to traditional
block matching motion estimation algorithms. Frame-
Matching Algorithms calculate the distortion of each
possible global motion parameter and select the one
which has the smallest distortion as the optimal
global motion parameters. However, in GME, the
searching space becomes very huge. It is extended
from 2-Dimensions in traditional motion estimation to
N-Dimensions (N-D) in GME, where N is the number
of global motion parameters. Furthermore, in tradi-
tional motion estimation, the resolution of searching
space is nearly limited, such as integer pixel, half
pixel, or quarter pixel, but in GME, the resolution of
searching space is almost unlimited because of a high
precision requirement. Hence there are much more
candidates in GME compared to traditional motion es-
timation. The computation complexity of this algorithm
is increased largely.

N-D diamond search is a typical Frame-Matching
Algorithm [26]. The flowchart is shown in Fig. 2a. In
order to make a fair comparison between different
GME algorithms, a hierarchical method which is the
same as Gradient Descent in MPEG-4 Verification
Model (VM) [23] is adopted. The hierarchial method is
implemented with a three pyramid and a low pass filter.
There are three levels, original frame size, 1/4 frame
size, and 1/16 frame size in this algorithm. The low pass
filter is a 3-tap filter, [1/4 1/2 1/4]. After filtering the
frame, the frame is subsampled in horizonal and verti-
cal directions. In this algorithm, the affine model, which
is shown in Eqs. 1 and 2, is applied as the global motion
model. At each level, two step sizes of N-D diamond
search are adopted. Because there are six variables in
affine model, 36 candidates have to be calculated in

each iteration. If the sum of absolute differences (SAD)
of the whole frame is convergent or the number of
iterations is larger than the threshold, the processing
goes to the smaller step size. After finishing the com-
putation of two step sizes, the procedure enters to the
next level. When the computation of three levels has
been finished, the optimal global motion parameters is
selected.

2.2 Differential-Technique Algorithms

Gradient Descent is a well-known GME algorithm
of Differential-Technique Algorithms. The flowchart
of GME in MPEG-4 VM [23] is shown in Fig. 2b.
There are three major functions, 3-Tap-Filter, Initial-
Matching, and Gradient-Descent in this algorithm. Gra-
dient Descent is a hierarchical and iterative algorithm.
A three-level pyramid and a 3-Tap-Filter is used for
this propose. At the smallest frame size level, the pre-
dictive translation vector is generated in the Initial-
Matching. After that, global motion parameters are
estimated by Levenberg-Marquardt iterative minimiza-
tion algorithm [30] in Gradient-Descent. The iterative
process does not finish until it converges or achieve the
maximum number of iterations at each level.

In Gradient-Descent, global motion parameters are
estimated by minimizing the mean square error, E,

E = 1
TotPels

∑

i∈TotPels

|e(i)|2, (3)

e(i) = I(xi, yi) − I′ (x′
i, y′

i

)
, (4)

where I(xi, yi) is the luminance of current pixel (xi, yi)

in the current frame, I′(x′
i, y′

i) is the luminance of the
corresponding position for current pixel (xi, yi) in the
reference frame, and TotPels is a set of effective pixels,

Y.-H. Chen et al.

whose errors are smaller than the error threshold. The
error threshold is used to exclude the effects of the
movements of foreground objects. By an error his-
togram, in which the distribution of |e(i)| is computed,
the error threshold is set as the value which excludes
top 20% of the distribution of |e(i)|.

The iterative procedure of Gradient-Descent is
shown as follows.

Mt+1 = Mt + A−1 B, (5)

M = (m0 m1 mN−2 mN−1)
T , (6)

where Mt are global motion parameters at t-th itera-
tion, A is an N×N matrix, B is an N×1 matrix, and
N is the number of global motion parameters. The
coefficients of the matrix A and B are given by

Akj =
∑

i∈TotPels

∂e(i)
∂mk

∂e(i)
∂m j

, (7)

Bk =
∑

i∈TotPels

−e(i)
∂e(i)
∂mk

, (8)

∂e(i)
∂m j

= f j

(
∂e(i)
∂x

,
∂e(i)
∂y

, xi, yi

)
. (9)

As shown in Fig. 2b, the iteration of Gradient-Descent
starts after Initial-Matching at the top level of the pyra-
mid and repeats at the subsequent levels. At each level,
the process of iterations is repeated, until the improve-
ment of each parameter is smaller than a threshold or
the number of iterations is larger than the maximum
number of iterations, which is set as 32 in MPEG-4 VM.

2.3 Feature-Point Based Algorithms

In Feature-Point Based Algorithms [22], some feature
points are selected to represent the whole frame. By the
motion vectors of these feature points, global motion
parameters are derived. Figure 2c shows the flowchart
of one kind of these algorithms. There are three ma-
jor functions in this algorithm, Hessian, Local Motion
Estimation, and Regression. In Hessian, feature points,
Hessian points, are selected by Hessian Value, which is
defined as
[(

d2 I(x, y)

dx2

)
·
(

d2 I(x, y)

dy2

)
−

(
d2 I(x, y)

dxdy

)2
]

.

First, the Hessian Value of each pixel is calculated,
and those pixels who have larger Hessian Values are
selected as feature points. A pixel which has a large
Hessian Value is more different to its neighboring
pixels. Because of the slighter aperture problem, it is
easy to find the true motion of such a pixel. On the
other way, in order to improve the correctness of global
motion parameters, these feature points have to be
dispersed evenly in the whole frame. Then, the frame is
partitioned into four parts, and the Hessian points are
averagely chosen in every part.

In Local Motion Estimation, the motion vector of
each feature point is calculated. Because the feature
points are Hessian points, the block matching algo-
rithm in an L-neighborhood (typically L=4) around
the Hessian point is applied. First, the corresponding
position of Hessian points in the reference frame is
predicted by the global motion parameters of the last
iteration or the previous frame. Next, a new optimal
matching position is searched around the predicted
position. Motion vector prediction can reduce the com-
putation complexity and improve the correctness of
motion vectors. Finally, global motion parameters are
calculated by least mean-square algorithm in Regres-
sion. This process is repeated iteratively, until the SAD
is convergent or the number of iterations is larger than
the maximum number of iterations.

2.4 Analysis and Comparison of GME Algorithms

In this section, we discuss the comparisons of three
GME algorithms with affine model. Many sequences,
such as Foreman, Stefan, Mobile, Table Tennis, and
so on, are tested, but due to the limited space in this
paper, only the data of Foreman and Stefan are listed.
We summarize the performances of three algorithms
in Table 1, including the run time, instruction profile,
and PSNR, where the PSNR is calculated by comparing
the original and reconstructed frames from the uncom-
pressed previous frame and only GME/GMC is used
to compensate the motion. The software and simula-
tion platform of instruction profiling are iprof and P4-
1.8 GHz with GB memory, where the operating system
is Redhat Linux 6.2. The simulation environment of
runtime profile is P4-1.8 GHz with 256 memory and
Language C is used.

Table 1 The performances
of frame matching, gradient
descent, and feature-point
based algorithms.

Algorithm Runtime (s/300f) Instruction (GIPS) Stefan (dB) Foreman (dB)

Frame matching 16,837.7 1,800.0 23.99 28.83
Gradient descent 280.1 35.0 24.10 28.73
Feature-point based 84.8 8.0 23.14 27.95

Analysis and hardware design of global motion estimation

The computation complexity and runtime of Frame-
Matching Algorithms are 1,800 GIPS and 16,837 s/300
frames at CIF Format with 30 fps, and these are much
larger than those of others. The computation complex-
ity and runtime of Feature-Point Based Algorithms are
the smallest, but it loses 1 dB compared to others.
Gradient Descent is the algorithm with a better tradeoff
between the computation complexity and performance.
Moreover, considering the complexity of instructions,
the operation of Frame-Matching Algorithm is much
more regular and simpler than others, but its com-
putation complexity is too large to be implemented.
The operation of Feature-Point Based Algorithms is the
most irregular and complicated, so it is not suitable
for hardware design. Consequently, Gradient Descent
is much suitable for hardware implementation.

2.5 Proposed Avoid Redundant Computation
Gradient Descent

Based on the above-mentioned analysis, Gradient De-
scent is much suitable for hardware implementation.
However, in Gradient-Descent, the number of iterations
is 32 in the worst case at each level. Even in the average
case, more than ten iterations are required in each
level, especially for Foreman and Stefan, as shown in
Table 2. A lot of iterations induce the huge computa-
tion complexity and ultra large memory bandwidth. We
proposed a fast GME algorithm [31], Avoid Redun-
dant Computation Gradient Descent (ARC-Gradient
Descent), to save the number of iterations and fur-
ther reduce the computation complexity and memory
bandwidth.

In general, camera motion is a continuous motion.
The global motion parameters of successive two frames
are similar, and then the global motion parameters of
previous frame can be used as the prediction [32] in
order to reduce the number of iterations. However,
because of using the previous global motion parameters
as the predictor, it is possible that the error propagation
occurs, especially when the scene changes. In order
to avoid this problem, the prediction scheme is inter-
rupted once every 30 frames, while Initial-Matching is

executed to find the initial translation parameters as the
predictor for Gradient-Descent.

When GME/GMC mode is adopted in MPEG-4
ASP, global motion parameters are not the final data
which are coded into the bitstream. Sprite points are
coded instead of global motion parameters in order
to match and preserve the precision of global motion
parameters. The coding flow of sprite points is in the
following. First, several reference points are selected
in the current frame. Second, based on global motion
parameters, sprite points, which are the corresponding
positions of the reference points, are calculated and
coded by DPCM. However, because the precision of
sprite points is limited and only half pixel, the constraint
on the precision of global motion parameters can be
redefined to skip the redundant computation of GME.
We proposed a new criterion to determine the conver-
gency of global motion parameters. The threshold is

0.5
Image_Width

.

By this constraint, the error of sprite points caused
by the error of global motion parameters is smaller
than half-pixel. After applying the new criterion and
temporal prediction, the number of iterations is much
less than five in the average case. Considering the worst
case, the max number of iterations is set as five. Be-
sides, the error threshold which is used to exclude the
foreground pixels is analyzed, and it is less than six in
the average case. The number of error histogram bins
is also reduced from 256 to 9 bins in order to reduce the
hardware cost of error histogram.

The performance of ARC-Gradient Descent is sum-
marized in Tables 2 and 3, where the simulation envi-
ronment is the same as the previous subsection. The
number of iterations in ARC-Gradient Descent is re-
duced to only 20% of that in the original algorithm.
The memory bandwidth is reduced from 356.06 to
46.27 MBytes/s in the worst case and from 217.17 to
19.10 MBytes/s in the average case. Totally, the mem-
ory bandwidth is saved 87.0% in the worst case, and the
runtime is also speeded up five times compared to the
original algorithm. The performance of ARC-Gradient

Table 2 The comparison of
the original and the propose
algorithms.

Algorithm Original Proposed

Sequence Stefan Foreman Average Stefan Foreman Average

PSNR 24.09 28.61 29.17 24.08 28.74 29.25

The number of iterations
Original size 13.75 15.42 11.64 2.65 2.53 1.70
1/4 size 11.75 14.33 9.62 2.09 2.01 1.10
1/16 size 12.57 16.82 8.94 3.55 3.04 1.95

Y.-H. Chen et al.

Table 3 The bandwidth
comparison of the original
and propose algorithms.

Function Original Proposed

Bandwidth Bandwidth Reduction (%)

3-tap-filter 3.11 3.11 0.0
Initial-matching 97.52 3.24 96.7
Gradient-descent

The average case 116.54 12.75 89.1
The worst case 255.43 39.92 84.4

Average case (Mbytes/s) 217.17 19.10 91.2
Worst case (Mbytes/s) 356.06 46.27 87.0

Descent is very close to the original Gradient Descent
algorithm, and in some sequences, the proposed algo-
rithm has a better performance, as shown in Table 2.

3 The Performance and Analysis of GME/GMC
Mode in MPEG-4 ASP

After the discussion of GME algorithms, we ana-
lyze the performances and computation complexity of
GME/GMC mode with different global motion models
in MPEG-4 ASP. Four global motion models, trans-
lation, isotropic, affine, and perspective models are
supported in MPEG-4 ASP. Translation model is like
as traditional motion estimation and only supports
translation motion. In isotropic model, there are two
more parameters, scaling and shear factors, compared
to translation model. Affine model supports different
scaling and shear factors in x and y directions. Per-
spective model is the most complicated motion model
among these four global motion models. The specifi-
cation is CIF Format with 30 fps, and the searching
range is [−32, 32) with quarter-pixel motion estimation
and compensation (QME/QMC). Moreover, there is no
B-frame. Seven sequences, including Stefan, Foreman,
Table Tennis, Mobile, and so on, are used to test

the performances of GME/GMC with various global
motion models. However, because of the limited space,
only the performances of Foreman and Table Tennis
are shown in the following discussion.

3.1 The Rate-Distortion Curves of GME/GMC Mode

The coding performance of GME/GMC depends on
the different features of test sequences. In the average
case, the coding gain of GME/GMC mode is 0.4 dB at
high bitrate and 0.2 dB at low bitrate. Figure 3 shows
the rate-distortion curves of no GME/GMC mode and
GME/GMC mode with various global motion models
in Foreman and Table Tennis. Figure 3a shows the rate-
distortion curves in Foreman. The coding gain is 0.7 dB
at very low bit rate (250 Kbps), and the coding gain
is 0.4 dB at high bit rate compared to that without
GME/GMC mode. The performances of four global
motion models are similar and close in Fig. 3a. But in
Fig. 3b which shows the comparison of Table Tennis,
the performance of translation model is almost the
same as that of no GMC mode. This is because scaling
is the major global motion in Table Tennis, and the
translation model cannot deal with this kind of camera
motion. Hence the performance of translation model is
lower 0.3 dB than those of others.

29

30

31

32

33

34

35

36

37

38

39

40

0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70

Bitrate (Mbps)

P
S

N
R

NO GMC mode Translation

Isotropic Affine

Perspective

29

30

31

32

33

34

35

36

37

38

0.20 0.40 0.60 0.80 1.00 1.20 1.40

Bitrate (Mbps)

P
S

N
R

NO GMC mode Translation

Isotropic Affine

Perspective

a b
Figure 3 The RD curves of no GME/GMC mode, and GME/GMC mode with translation, isotropic, affine, and perspective models
in a Foreman; b Table Tennis.

Analysis and hardware design of global motion estimation

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70

Bitrate (Mbps)

P
er

ce
nt

ag
e

of
 b

lo
ck

s

Translation Isotropic

Affine Perspective

30%

35%

40%

45%

50%

55%

60%

65%

70%

0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10

Bitrate (Mbps)

P
er

ce
nt

ag
e

of
 b

lo
ck

s

Translation Isotropic

Affine` Perspective

a b
Figure 4 The percentage of macroblocks which are selected GMC mode with different global motion models in a Foreman ; b Table
Tennis.

3.2 The Percentage of GME/GMC Macroblocks

Figure 4a and b show how many percentage of mac-
roblocks are coded by GME/GMC mode in Foreman
and Table Tennis, respectively. These macroblocks are
called GMC macroblocks. Compared the performances
of different global motion models, the coding gain is
increased, as the percentage of GMC macroblocks is
increased. In Fig. 4a, the percentages of GMC mac-
roblocks for four global motion models are similar,
so their performances are close. But in Fig. 4b, there
are fewer GMC macroblocks for translation model,
and the percentages of GMC macroblocks in the oth-
ers global motion models are close. This phenomenon
is also exhibited in the coding performance of Table
Tennis. In average cases, there are 40% macroblocks
which are coded by GME/GMC mode in one frame.
If the sequence is still or small motion like Weather
or Coastguard, the percentage of GMC macroblocks is
higher than 70%. Moreover, at ultra low bitrate or a
large quantization number, the percentage is increased
significantly.

Although more than 40% macroblocks are coded
by GME/GMC mode, the coding gain of GME/GMC
mode in CIF Format is only 0.4 dB in average cases.
This is because there are two factors to degrade the
performance of GME/GMC mode. First, when GME/
GMC mode is supported, for each current macroblock,
one extra bit is required to represent the selected cod-
ing mode. Second, global motion parameters also have

to be coded. These are the penalties of GME/GMC
mode. Besides, in the local motion estimation and
compensation (LME/LMC) mode, the motion vector
is coded by DPCM. The motion vector difference
between the motion vector and motion vector pre-
dictor is coded instead of the motion vector. If the
motion vector predictor matches with the motion vec-
tor, only one bit is required to be coded. That is, only
when the motion vector difference is not zero and
the distortion of GME/GMC mode is less than that
of LME/LMC mode, the coding gain of GME/GMC
mode exists. Otherwise, even if there are many GMC
macroblocks, the coding gain of GME/GMC mode is
still not apparent. For example, although more than
55% macroblocks are GMC macroblocks in Table Ten-
nis, the coding gain is only 0.3 dB at low bit rate. If
we can reduce the overhead of GME/GMC mode, the
coding gain of GME/GMC mode becomes apparent.

3.3 The Computation Complexity of GME/GMC
Mode

Table 4 is the percentages of the run time for
GME/GMC with different global motion models and
LME/LMC with quarter pixel in an MPEG-4 ASP
video coding system. The test sequence is Stefan, CIF
Format, 30 fps. The run time of GME/GMC with trans-
lation, isotropic and affine models is 21%, 34%, and
57% of that of LME/LMC. From Table 4, the run time
of GME/GMC mode is increased as the complexity

Table 4 The runtime
percentage of GME/GMC
and LME/LMC.

Global motion model GME/GMC LME/LMC GME/LME
percentage (%) percentage (%) ratio (%)

Translation model 16.8 78.1 21.5
Isotropic model 24.1 71.1 33.9
Affine model 34.8 61.1 56.9

Y.-H. Chen et al.

Table 5 The instruction profiling of gradient descent with affine
model.

Instruction Percentage (%)

Arithmetic 33.14
Data instruction 54.33
Logic 1.26
Rotate & shifter 0.13
Jump, test & comparator 10.39
Stack 0.75
Floating-point operation 44.77

of global motion model increases. The computation
complexity of GME/GMC mode is very huge, although
GME/GMC is a frame-level operation. Therefore, a
hardware accelerator of GME is required for realtime
applications, such as camcoders with MPEG-4 ASP
encoder.

As shown in Table 1, Gradient Descent with affine
model takes 35 GIPS in Stefan at CIF Format, 30 fps.
Table 5 further shows the detailed results of instruction
profiling in Gradient Descent, where the simulation
environment is the same as Table 1. Among huge oper-
ations, 44% of operations are floating-point operations,
because a high precision is required for global motion
parameters and is achieved by use of floating-point
numbers. These floating-point operations enlarge the
cost of hardware implementation. Besides, 55% of op-
erations are about data instructions, including loading
and storing. It means that ultra large memory access
is required in this algorithm, as shown in Table 3. The
requirement of memory bandwidth is too huge to be
acceptable for hardware implementation. Therefore,
how to effectively reduce memory bandwidth of Gradi-
ent Descent is an important issue for hardware design.
Moreover, compared to four global motion models,
isotropic model provides a good tradeoff between com-
putation complexity and coding performance.

4 Proposed Hardware Architecture

4.1 Hardware Design Challenges

There are several hard problems of GME and Gradient
Descent for hardware implementation. We described
them in the following.

4.1.1 Huge Computation Complexity and Ultra Large
Memory Bandwidth

The first problem is huge computation complexity and
ultra large memory bandwidth. The huge computation
complexity results in large hardware cost, and the ultra

large memory bandwidth increases the loading of sys-
tem bus and leads to the difficulty when the GME
hardware accelerator is integrated into a complete
MPEG-4 ASP video encoder system. However, this
problem is solved by the proposed ARC-Gradient De-
scent algorithm. The computation complexity is only
20% of that in the original algorithm, and 91% memory
bandwidth is saved in the average case.

4.1.2 Irregular Memory Access

The second problem is the irregular memory access.
The problem is explained in Fig. 5. In Fig. 5, the circles
are the reference pixels in the reference frame. The
triangle is the corresponding position of current pixel.
A square is a candidate of the corresponding positions
of next current pixel. Figure 5 shows the phenomenons
of irregular memory access with different global motion
parameters. Isotropic model is taken as an example,
which is

x′ = m0x + m1 y + m2, (10)

y′ = −m1x + m0 y + m3. (11)

Then, the difference, (�x, �y), between the corre-
sponding positions of two successive current pixels,
(x, y) and (x + 1, y), is (m0, −m1). In traditional motion
model where (m0, −m1) is always equal to (1, 0), the
memory access is regular and predictable. However, in
isotropic model, scaling and shear are supported, and
they are floating-point numbers for the requirement of
their precision. Then, (m0, −m1) becomes variable and
is a set of floating-point numbers in GME. When the
scaling factor is smaller than one, m0 < 1, it is possible
that the corresponding position of next current pixel
stays at the same region of current pixel, as shown in
Fig. 5a. Oppositely, if m0 > 1, it is also possible that
the corresponding position of next current pixel is not
adjacent to the corresponding region of current pixel,
as shown in Fig. 5b.

Figure 5c and d show the irregular memory access
due to the shear factor. When the shear factor is pos-
itive, m1 > 0, the corresponding positions of current
pixels in the same row are moved up pixel by pixel
in y direction. It is possible that the corresponding
position of next current pixel is back to the last row
in y direction, as shown in Fig. 5c. Conversely, if shear
factor is negative, m1 < 0, the corresponding positions
of current pixels in the same row are moved down pixel
by pixel in y direction, and may go to the next row, as
shown in Fig. 5d.

Figure 5e shows the irregular memory access of
GME, if 0 < m0 < 2 and −1 < m1 < 1. It means that

Analysis and hardware design of global motion estimation

Figure 5 Irregular memory
access of GME with isotropic
model at different global
motion parameters;
(a) m0 < 1;
(b) 2 > m0 > 1;
(c) m1 > 0 ;
(d) m1 < 0 ;
(e) 0 < m0 < 2
and −1 < m1 < 1.

a b

c d e

we cannot predict the corresponding position of next
current pixel effectively. Irregular memory access also
reduces the hardware utilization, when the schedul-
ing of traditional motion estimation is adopted. This
phenomenon becomes more and more serious, when
the camera motion is larger and larger in scaling or
shear dimension. We will discuss this problem with the
scheduling of traditional motion estimation in detailed,
in Section 4.2.4.

4.1.3 Memory Access of Interpolation and Differential
Values

The third problem is that a lot of interpolation opera-
tions are required, because the corresponding position
of current pixel is usually not an integer pixel. The
corresponding reference value is interpolated based on
the four neighboring pixels. The differential values, as
shown in Eq. 9, are also required in this algorithm, in
order to approach the final global motion parameters.
Then, four neighboring reference pixels are necessary
for computing one current pixel. If the memory access
is regular and predictable, we can adopt the data reuse
scheme to solve this problem easily. However, the data
reuse between pixels is limited because of irregular
memory access, and then the operating frequency is
seriously dominated by the memory access of interpo-
lation. How to efficiently access the required pixels is a
challenge of hardware design.

4.1.4 Wordlength of Accumulated Values

The last problem is that the error and differential values
of the whole frame have to be accumulated, as shown
in Eqs. 7 and 8. These values have large magnitudes
and variances. The required precision of these data is
high in order to keep the performance. However, the

hardware cost is increased as the wordlength increases,
and due to this reason, a fixed-point number is not
efficient for hardware implementation. On the other
hand, although a floating-point number can provide a
lower hardware cost, it sacrifices the precision in the
process of accumulation. In short, how to provide a
high precision with a low hardware cost is also a design
challenge for hardware implementation of GME.

In the following subsections, we proposed a hard-
ware architecture system of GME [31], and these
design challenges are overcome. A new scheduling,
Reference-Based Scheduling, is proposed to solve
the irregular memory access. An interleaved memory
arrangement is adopted to achieve that four neigh-
boring pixels can be accessed in one cycle to reduce
the operating frequency. A two-stage accumulator is
also applied to reduce the wordlength and preserve the
precision of accumulated values.

4.2 Proposed Hardware Architecture System

Based on the proposed ARC-Gradient Descent algo-
rithm, a hardware architecture of GME for MPEG-4
ASP is proposed, as shown in Fig. 6. There are four
major components, GME controller, 3-Tap Filter &
Subsample, Initial Matching, and Gradient Descent with
Local Memory. An off-chip frame memory is required
in this architecture to store the reference and current
frames. GME controller controls other modules and
decides which module takes action. Each module is
described in detailed in the following subsections.

4.2.1 3-Tap Filter & Subsample

3-tap filter and frame subsampling of the proposed
ARC-Gradient Descent algorithm are implemented in
this module. Current frame is filtered by a 2-D 3-tap

Y.-H. Chen et al.

Off-Chip Frame Memory

GME Contorller

3-tap
Filter

Initial
Matching

Local
Memory

Cur.
Frame Cur. FrameRef. Frame

Subsample
Frame

Gradient
Descent

Initial global motion vector

Sprite
Point

Figure 6 The system overview of hardware architecture for
GME.

filter and subsampled by two in horizontal and ver-
tical directions, respectively. The 2-D 3-tap filter can
be decomposed into two 1-D separated filters, vertical
and horizontal filters, as shown in Fig. 7. The data are
filtered by horizontal filter and subsampled in hori-
zontal direction before the vertical filter. Because of
the vertical filter, two delay lines are required to store
temporary data after horizontal filter. In general cases,
the delay lines are implemented by dual ports memo-
ries. However, because of the horizontal subsample, the
data rate of vertical filter is only half of the horizontal
filter, and then a single port memory is enough to be
the delay line. The data are filtered by the horizontal
filter and written into the delay line in one cycle. In
the next cycle, the data in the delay line are read and
filtered by the vertical filter. At the same time, the
output in the horizontal filter can be discarded because
of subsampling in the horizontal direction. After the
vertical filter, the data are outputted to the off-chip
memories.

4.2.2 Initial Matching

In the proposed ARC-Gradient Descent algorithm, Ini-
tial Matching is executed once in every 30 frames, and
it only applied on the 1/16 frames. Therefore, consider-
ing hardware efficiency and computation complexity of
this function, one processing element is sufficient. The
hardware architecture of Initial Matching is similar to

other conventional motion estimation architectures and
it consists of two modules, as shown in Fig. 8a. One is
Processing Element, and the other is Error Histogram.
Processing Element is responsible for calculating the
absolute difference and accumulating the total error of
whole frame for each candidate. The searching range is
[−8, 7] at the smallest frame size. After examining all
searching candidates, the motion vector which has the
smallest total error is selected as the initial prediction
for the next stage. Error Histogram is responsible for
calculating the distribution of the error in the whole
frame and decide the error threshold for the next stage.

4.2.3 Gradient Descent with Local Memory

The detailed architecture of Gradient Descent with Lo-
cal Memory is shown in Fig. 8b. Controller generates
the address of current pixel and calculates the cor-
responding position of current pixel in the reference
frame according to Eqs. 10 and 11 with global motion
parameters at the last iteration. The luminance of ref-
erence pixel is interpolated in Basic Vector, where the
basic differential values used to compute the matrix
elements in Eq. 9 are also calculated. The distribution
of errors is estimated in Error Histogram, and then the
error threshold is derived. The elements of matrix A
and B in Eqs. 7 and 8, are computed and accumulated
in Matrix Element. After finishing the processing of
the accumulation, the inverse matrix A−1 and matrix
multiplication A−1 B in Eq. 5 are calculated in Floating-
Point Matrix Processor. Sprite Point checks if the global
motion parameters converge or not and calculates the
corresponding points of reference points, sprite points,
for GME/GMC mode in MPEG-4 ASP.

4.2.4 Reference-Based Scheduling

In GME algorithms, the irregular memory access is
inevitable. This problem leads to the difficulty of mem-
ory access and reduces the hardware utilization with
the scheduling of traditional motion estimation. In the

Figure 7 The hardware
architecture of 3-tap filter
& subsample. D D

m
ux

m
ux

Shifter

Shifter

Shifter

+ RAM 2

RAM 1

D
em

ux

m
ux

m
ux

m
ux

Shifter

Shifter

Shifter

+

Input

Output

0

0
0

0

0

Horizontal Filter Vertical Filter

Analysis and hardware design of global motion estimation

Figure 8 The hardware
architectures of a Initial
Matching; b Gradient Descent
with Local Memory.

a b

scheduling of traditional motion estimation, the refer-
ence data in local memory are loaded based on the
current macroblock. Figure 9a shows the result of GME
with the scheduling of traditional motion estimation.
Because of the shear factor, the corresponding region
is a sheared square, when the global motion model
is isotropic model. Consequently, the penalty of the
external memory access is large due to the irregular
memory access. Besides, because scaling and shear fac-
tors are variable, the size of the corresponding region is
also variable. A larger local memory for the worst case

is required, but the hardware utilization is low in the
average or the best case.

Figure 9b shows the proposed scheduling, Refer-
ence-Based Scheduling. Compared to the traditional
scheduling of motion estimation, the roles of reference
and current frames are exchanged. In the proposed
Reference-Based Scheduling, based on the region of
the reference data in the local memory, the current data
are decided to be processed or not. In the beginning, the
reference frame is segmented into several sections. For
each section, the data are loaded into local memories,

Figure 9 The different
schedulings of GME;
a The scheduling of
traditional motion estimation;
b The proposed scheduling,
Reference-Based Scheduling.

Reference Frame (regular scan) Current Frame (irregular scan)

b

Current Frame (regular scan)

a

Reference Frame (irregular scan)

The worst case

The best case

The worst case

The best case

Y.-H. Chen et al.

Figure 10 The data
arrangement of reference
frame in a External memory;
b Local memory.

Ref. frame in external memory Ref. frame in local memory

ba

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

C4

D4

A4

B4

A5

B5

D5

C5

A6 A7

B6 B7

C6 C7

D6 D7

Mem0

Mem1

Mem2

Mem3

A0 C1 A2 C3 A4 C5 A6 C7

B0 D1 B2 D3 B4 D5 B6 D7

C0 A1 C2 A3 C4 A5 C6 A7

D0 B1 D2 B3 D4 B5 D6 B7

row by row. At the same time, those current pixels,
whose corresponding positions are located in this sec-
tion, are calculated row by row. If the corresponding
position of current pixel in one row is not located in this
section, the computation of this row is terminated, and
the position of current pixel is recorded. After finishing
the computation in one section, the procedure goes to
the next section until all sections have been computed.

By this way, the utilization of local memory is almost
100% regardless of the best or worst case. The data
reuse of reference frame is nearly achieved the maxi-
mum. In a word, although irregular memory access is
inevitable, we proposed Reference-Based Scheduling
so that the scan order of the reference frame becomes
regular, and that of the current frame is also nearly
regular. Not only the impact of irregular memory access
can be reduced, but also the data in the reference frame
can be reused as much as possible.

4.2.5 Interleaved Memory Arrangement

Because of the interpolation and differential values,
four neighboring reference pixels are required for
computing one current pixel. If only one neighboring
reference pixel is gotten in one cycle, the operating
frequency should be four times of the total number
of current pixels in one second, at least. If we can get
four neighboring pixels in one cycle, 75% cycles can
be saved compared to the previous scheme. An inter-

leaved memory arrangement is applied to solve this
problem. Figure 10a and b show the data arrangements
and relationship between external and local memories.
The data arrangement of reference frame in external
memory is raster scan. The data arrangement of refer-
ence frame in local memories is interleaved. The local
memory consists of four dual port memories. By the
proposed data arrangement of local memories, four
neighboring reference pixels are located into different
memory banks. Therefore, we can access them in one
cycle.

4.2.6 Two-Stage Accumulator

In Matrix Element, elements of matrix A and B, as
shown in Eqs. 7 and 8, are accumulated. Because these
accumulated elements are the related information of
whole frame, they have large variances and magnitudes.
Therefore, if a fixed-point number is applied to rep-
resent these data, the wordlength is large. Then the
hardware cost is high. On the contrary, if a floating-
point number is adopted, the precision of these data is
lost in the process of accumulation. The performance
of GME is degraded. Considering the hardware cost
and performance, a two-stage accumulator is proposed
to accumulate them. In the first stage, a fixed-point
accumulator is used to accumulate the matrix element.
When the partial result of the first stage is larger than
the accumulated threshold, a floating-point accumula-
tor is adopted to accumulate the partial results of the

Figure 11 The hardware
architecture of
a Floating-point matrix
operation system;
b Floating-point adder and
subtractor; c Floating-point
multiplier; d Floating-point
divider.

Matrix
Operation

FSM

Add.

Sub.

Mul.

Div.

Nor.Reg. Array

Data Input

+/-

Exp.
Comp.

Mux
Selection

Bit Alignment

Overflow Detect

+
x

Overflow
Detect

Exp. part

Mag. part -
Bit Alignment

D

Shifter &
Subtractor

Exp. part

Mag. part

a b c d

Analysis and hardware design of global motion estimation

first stage in the second stage. By this accumulator, the
wordlength can be reduced, and the precision can be
preserved.

4.2.7 Floating-Point Matrix Processor

Floating-Point Matrix Processor is responsible for the
calculation of inverse matrix and matrix multiplication
in Eq. 5. In Floating-Point Matrix Processor, there
are three major modules, Matrix Operation FSM, Reg.
Array, and Operators, which includes adder (Add.),
subtractor (Sub.), multiplier (Mul.), divider (Div.), and
normalizer (Nor.), as shown in Fig. 11a. Matrix Oper-
ation FSM is the finite state machine which executes
the operations of a 4×4 inverse matrix and a multi-
plication of a 4×4 and 4×1 matrixes. Reg. Array is
the data buffer for storing the input values and par-
tial results. Figure 11b, c, and d show the detailed
architectures of Operators. Because they are floating-
point operations, the operations of exponential part,
bit alignment, and overflow detection are required in
these architectures. Except the divider, the others finish
one operation in one cycle. The divider is a multi-cycle-
shift-and-subtract divider, and it can generate one bit of
the quotient per cycle. Floating-Point Matrix Processor
executes five operators at the same time and takes 137
cycles to finish the operations of a 4×4 inverse matrix
and a multiplication of a 4×4 and 4×1 matrixes.

5 Hardware Implementation Result

The implementation results and our specification of
the proposed GME hardware accelerator are listed in
Table 6. The target specification is MPEG-4 ASP@L3,
which is 352×288 with 30 fps. The working frequency is
30 MHz. The hardware is implemented with Verilog-
HDL and synthesized with SYNOPSYS Design
Compiler. ARTISAN 0.18um cell library is adopted to

Table 6 The specification of proposed hardware accelerator.

Technology UMC 0.18um CMOS 1P6M
Package 68CLCC
Die size 1.94916 × 1.94628 mm
Core size 1.44936 × 1.44648 mm
Gate count 130,935
On-chip memory 2 176 × 8 single port SRAM

4 160 × 8 dual ports SRAM
Work clock rate 30 MHz
Processing ability CIF Format with 30 fps @ 30 MHz
Power consumption 29.59 mW @ 30 MHz, 1.8 V

Figure 12 The layout of the proposed hardware accelerator
for GME.

design the hardware. Figure 12 shows the layout of our
proposed GME hardware accelerator. The detailed dis-
tribution of gate count and memory usages is shown
in Table 7. The total gate count is about 131 K. Local
memory size is 2.8 Kbits and 5.1 Kbits in the 3-Tap
Filter & Subsample and Gradient Descent, respectively.
Although we have proposed two-stage accumulators to
reduce the hardware cost of Matrix Element, the gate
count of Matrix Element is still large. The gate count of
Floating-point Matrix Processor is also 26 K.

Compared with the other GME hardware architec-
ture, SPM [33], whose target is also MPEG-4 ASP@(L2,
L3), the gate count is 66 K, and internal memory is
31 Kb with AVANT! 0.35um cell library. The compari-
son is shown in Table 8. Although our gate count is dou-
ble of that in SPM, the required operating frequency is
only 1/3 of that in SPM. Moreover, our internal memory
size is only 26.7% of SPM, and the required memory

Table 7 The hardware implementation results for GME.

Module Gate count On-chip memory

3-tap filter & subsample 1,144 2,816 bits
Initial matching 3,718 0
Sprite point 3,348 0
Gradient descent

Controller 18,921 0
Basic vector 2,215 0
Error histogram 2,370 0
Matrix element 72,911 0
Floating-point matrix 26,308 0

processor
Local memory 0 5,120 bits

Total 130,935 7,936 bits

Y.-H. Chen et al.

Table 8 The comparison between our proposed and SPM at
MPEG-4 ASP@L3.

Architecture Our proposal SPM

Gate counts 131 K 66 K
Frequency 30 MHz 100 MHz
On-chip memory 7.9 Kbits 30.8 Kbits
Memory bandwidth 19.1 Mbyte/s 198.0 Mbytes/s

bandwidth is only 19.10 MB/s in the average case, which
is 9.65% of SPM. Hence our design is better and more
suitable for the integration of video coding systems
than SPM.

6 Conclusion

GME/GMC plays an important role in many applica-
tions including video segmentation, MPEG-7 descrip-
tors, and video coding. Many GME algorithms are
proposed to be applied in various applications. Based
on our analyses, Gradient Descent is better than other
algorithms, if the tradeoff between the computation
complexity and the performance of an algorithm is con-
sidered. Moreover, because of the huge computation
complexity and ultra large memory bandwidth, a hard-
ware accelerator is required for realtime applications of
GME. There are few hardware architectures, because
there are several hardware design challenges of GME.
The first problem is the huge memory bandwidth. This
problem is solved by our proposed ARC-Gradient
Descent algorithm. In this algorithm, 91.2% memory
bandwidth and 80% iterations can be saved. The sec-
ond problem is the irregular memory access. Although
the irregular memory access is inevitable, the impact
of the irregular memory access is largely reduced by
the proposed Reference-Based Scheduling. Finally, an
interleaved memory arrangement is applied to access
four neighboring reference pixels. This technique satis-
fies the memory access requirement of the interpolation
and differential values, and it can also reduce the cycles
of memory access. Based on the above techniques, a
hardware architecture for GME in MPEG-4 ASP@L3
is proposed. The gate count is 131 K with 7.9 Kb on-chip
memory, the operating frequency is 30 MHz, and the
required memory bandwidth is only 10% of the pre-
vious work, which is much suitable to be integrated
into MPEG-4 ASP encoder. Besides, the provided in-
formation from GME hardware can be also utilized in
may applications, such as image stabilizer, scene change
detection, MPEG-7 descriptor, and so on.

References

1. Dufaux, F., & Konrad, J. (2000). Efficient, robust, and fast
global motion estimation for video coding. IEEE Transac-
tions on Image Processing, 9, 497–501.

2. Erturk, S. (2003). Digital image stabilization with sub-image
phase correlation based global motion estimation. IEEE
Transactions on Consumer Electronics, 49, 1320–1325.

3. Hoetter, M. (1989). Differential estimation of the global
motion parameters zoom and pan. Signal Processing, 16,
249–265, March.

4. Chen, H. H., Kiang, C.-K., Peng, Y.-C., & Chang, H.-A.
(2007). Integration of digital stabilizer with video codec for
digital video cameras. IEEE Transactions on Circuits and
Systems for Video Technology, 17(7), 801–813.

5. Lu, Y., Gao, W., & Wu, F. (2001). Sprite generation for
frame-based video coding. In Proc. of IEEE int. conf. on
image processing (Vol. 1, pp. 473–476).

6. Lu, Y., Ga, W., & Wu, F. (2002). Automatic video segmenta-
tion using a novel background model. In Proc. of IEEE int.
symp. on circuits syst. (Vol. 3, pp. 807–810), May.

7. Qi, B., & Amer, A. (2005). Robust and fast global motion
estimation oriented to video object segmentation. In Proc. of
IEEE int. conf. on image processing. (Vol. 1, pp. 153–156),
September.

8. ISO/IEC (2001). Text of ISO/IEC 15938-3/FCD information
technology – multimedia content description interface - part 3
visual. ISO/IEC JTC 1/SC 29/WG11 N4062.

9. Manjunath, B. S., Salembier, P., & Sikora, T. (2002). Intro-
duction to MPEG-7. New York: Wiley.

10. Smolic, A., Sikora, T., & Ohm, J.-R. (1999). Long-term global
motion estimation and its application for sprite coding, con-
tent description, and segmentation. IEEE Transactions on
Circuits and Systems for Video Technology, 9(8), 1227–1242.

11. Irani, M., Anandan, P., & Hsu, S. (1995). Mosaic based repre-
sentations of video sequences and their applications. In Proc.
of IEEE int. conf. on comput. vision (pp. 605–611).

12. Chien, S.-Y., Chen, C.-Y., Chao, W.-M., Hsu, C.-W., Huang,
Y. W., & Chen, L.-G. (2002). A fast and high subjective
quality sprite generation algorithm with frame skipping and
multiple sprites techniques. In Proc. of IEEE int. conf. on
image processing (Vol. 1, pp. 193–196).

13. Lu, Y., Gao, W., & Wu, F. (2003). Efficient background
video coding with static sprite generation and arbitrary-shape
spatial prediction techniques. IEEE Transactions on Circuits
and Systems for Video Technology, 13(8), 394–405, May.

14. Chen, C.-Y., Chien, S.-Y., Chen, Y.-H., Huang, Y.-W., &
Chen, L.-G. (2003). Unsupervised object-based sprite coding
system for tennis sport. In Proc. of IEEE int. conf. multimedia
expo (Vol. 1, pp. 337–340).

15. ISO/IEC (1999). Information technology – coding of audio-
visual objects – part 2: visual. ISO/IEC 14496-2.

16. Dufaux, F. (1996). Results for video coding using dynamic
sprite (core experiment N3). ISO/IEC JTC1/SC29/WG11
M1458.

17. Steinbach, E., Wiegand, T., & Girod, B. (1999). Using mul-
tiple global motion models for improved block-based video
coding. In Proc. of IEEE int. conf. on image processing
(Vol. 2, pp. 56–60).

18. Keller, Y., & Averbuch, A. (2003). Fast gradient meth-
ods based on global motion estimation for video compres-
sion. IEEE Transactions on Circuits and Systems for Video
Technology, 13(8), 300–309.

19. Stolberg, H.-J., Berekovic, M., Pirsch, P., & Runge, H.
(2002). The MPEG-4 advanced simple profile - a complexity

Analysis and hardware design of global motion estimation

study. In Proc. of 2002 workshop and exhibition on MPEG-4
(pp. 33 –36).

20. Fu, M.-F., Au, O., & Chan, W.-C. (2003). Fast global motion
estimation based on local motion segmentation. In Proc. of
IEEE int. conf. on image processing (Vol. 3, pp. 367–370).

21. Moscheni, F., Dufaux, F., & Kunt, M. (1995). A new
two-stage global/local motion estimation based on a back-
ground/foreground segmentation. In Proc. of IEEE int. conf.
on acoust., speech, and signal processing (pp. 2261–2264).

22. Kim, E. T., & Kim, H.-M. (1998). Fast and robust parameter
estimation method for global motion compensation in the
video coder. IEEE Transactions on Consumer Electronics,
45(1), 76–83.

23. MPEG Video Group (2001). The MPEG-4 video standard
verification model version 18.0. ISO/IEC JTC 1/SC 29/WG11
N3908.

24. Wu, S. F., & Kittler, J. (1990). A differential method for
simultaneous estimation of rotation, change of scale and
translation. Signal Processing: Image Communication, 2(1),
69–80, May.

25. Adolph, D., & Buschmann, R. (1991). 1.15Mbit/s coding
of video signals including global motion compensation.
Signal Processing: Image Communication, 3(2–3), 259–274,
June.

26. Chan, W.-C., Au, O., & Fu, M.-F. (2002). A novel predictive
global motion estimation for video coding. In Proc. of IEEE
int. symp. on circuits syst. (Vol. 3, pp. 5–8), May.

27. Berekovic, M., Stolberg, H.-J., & Pirsch, P. (2002). Mul-
ticore system-on-chip architecture for MPEG-4 streaming
video. IEEE Transactions on Circuits and Systems for Video
Technology, 12(8), 688–699.

28. Irani, M., & Peleg, S. (1993). Motion analysis for image
enhancement: Resolution, occulusion and transparency.
Journal of Visual Communication and Image Representation,
4(4), 324–335.

29. Badawy, W., & Bayoumi, M. (2002). A multiplication-free
algorithm and a parallel architecture for affine transforma-
tion. Journal of VLSI Signal Processing, 31(2), 173–184, June.

30. Marquardt, D. W. (1963). An algorithm for least-squares
estimation of nonlinear parameters. Journal of the Society for
Industrial and Applied Mathematics, 11, 431–441.

31. Chen, C.-Y., Chien, S.-Y., Chao, W.-M., Huang, Y.-W., &
Chen, L.-G. (2004). Hardware architecture for global motion
estimation for MPEG-4 advanced simple profile. In Proc. of
IEEE int. symp. on circuit and system (Vol. 2, pp. 23–26),
May.

32. Richter, H., Smolic, A., Stabernack, B., & Muller, E.
(2001). Real time global motion estimation for an MPEG-4
video encoder. In Proceedings of picture coding symposium
(pp. 25–27).

33. Chien, S.-Y., Chen, C.-Y., Chao, W.-M., Huang, Y.-W.,
& Chen, L.-G. (2003). Analysis and hardware architecture
for global motion estimation in MPEG-4 advanced sim-
ple profile. In Proc. of int. symp. on circuits syst. (Vol. 2,
pp. 720–723), May.

Yi-Hau Chen was born in Taipei, Taiwan, R.O.C., in 1981. He
received the B.S.E.E degree from the Department of Electri-
cal Engineering, National Taiwan University, Taipei, Taiwan,
R.O.C., in 2003. Now he is working toward the Ph.D. degree
in the Graduate Institute of Electronics Engineering, National
Taiwan University. His major research interests include the
algorithm and related VLSI architectures of global/local motion
estimation, H.264/AVC, scalable video coding.

Shao-Yi Chien received the B.S. and Ph.D. degrees from
the Department of Electrical Engineering, National Taiwan
University (NTU), Taipei, in 1999 and 2003, respectively. During
2003 to 2004, he was a research staff in Quanta Research
Institute, Tao Yuan Shien, Taiwan. In 2004, he joined the
Graduate Institute of Electronics Engineering and Department
of Electrical Engineering, National Taiwan University, as an
Assistant Professor. His research interests include video segmen-
tation algorithm, intelligent video coding technology, image pro-
cessing, computer graphics, and associated VLSI architectures.

Y.-H. Chen et al.

Ching-Yeh Chen was born in Taipei, Taiwan, R.O.C., in 1980.
He received the B.S., and Ph.D. degrees in electrical engineer-
ing from National Taiwan University (NTU), Taipei, Taiwan,
R.O.C. in 2002, and 2006, respectively. He joined MediaTek Inc.
from 2006. His research interests include intelligent video signal
processing, global/local motion estimation, scalable video coding,
and associated VLSI architectures.

Yu-Wen Huang was born in Kaohsiung, Taiwan, in 1978. He
received the B.S. degree in electrical engineering and Ph.D.
degree in the Graduate Institute of Electronics Engineering from
National Taiwan University (NTU), Taipei, in 2000 and 2004,
respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in
2004, where he develops integrated circuits related to video cod-
ing systems. His research interests include video segmentation,
moving object detection and tracking, intelligent video coding
technology, motion estimation, face detection and recognition,
H.264/AVC video coding, and associated VLSI architectures.

Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He
received the BS, MS, and Ph.D. degrees in Electrical Engineering
from National Cheng Kung University, in 1979, 1981, and 1986,
respectively.

He was an Instructor (1981–1986), and an Associate Profes-
sor (1986–1988) in the Department of Electrical Engineering,
National Cheng Kung University. In the military service during
1987 and 1988, he was an Associate Professor in the Institute
of Resource Management, Defense Management College. From
1988, he joined the Department of Electrical Engineering,
National Taiwan University. During 1993 to 1994 he was Visit-
ing Consultant of DSP Research Department, AT&T Bell Lab,
Murray Hill. At 1997, he was the visiting scholar of the Depart-
ment of Electrical Engineering, University, of Washington,
Seattle. Currently, he is Professor of National Taiwan University.
From 2004, he is also the Executive Vice President and the Gen-
eral Director of Electronics Research and Service Organization
(ERSO) in the Industrial Technology Research Institute (ITRI).
His current research interests are DSP architecture design, video
processor design, and video coding system.

Dr. Chen is a Fellow of IEEE. He is also a member of the
honor society Phi Tan Phi. He was the general chairman of the
7th VLSI Design CAD Symposium. He is also the general chair-
man of the 1999 IEEE Workshop on Signal Processing Systems:
Design and Implementation. He serves as Associate Editor of
IEEE Trans. on Circuits and Systems for Video Technology from
June 1996 until now and the Associate Editor of IEEE Trans. on
VLSI Systems from January 1999 until now. He was the Associate
Editor of the Journal of Circuits, Systems, and Signal Processing
from 1999 until now. He served as the Guest Editor of The
Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology, November 2001. He is also the Associate
Editor of the IEEE Trans. on Circuits and Systems II: Analog
and Digital Signal Processing. From 2002, he is also the Associate
Editor of Proceedings of the IEEE.

Dr. Chen received the Best Paper Award from ROC Com-
puter Society in 1990 and 1994. From 1991 to 1999, he received
Long-Term (Acer) Paper Awards annually. In 1992, he received
the Best Paper Award of the 1992 Asia-Pacific Conference on
Circuits and Systems in VLSI design track. In 1993, he re-
ceived the Annual Paper Award of Chinese Engineer Society.
In 1996, he received the Out-standing Research Award from
NSC, and the Dragon Excellence Award for Acer. He is elected
as the IEEE Circuits and Systems Distinguished Lecturer from
2001–2002.

	Analysis and Hardware Architecture Design of Global Motion Estimation
	Abstract
	Introduction
	GME Algorithms
	Frame-Matching Algorithms
	Differential-Technique Algorithms
	Feature-Point Based Algorithms
	Analysis and Comparison of GME Algorithms
	Proposed Avoid Redundant Computation Gradient Descent

	The Performance and Analysis of GME/GMC Mode in MPEG-4 ASP
	The Rate-Distortion Curves of GME/GMC Mode
	The Percentage of GME/GMC Macroblocks
	The Computation Complexity of GME/GMC Mode

	Proposed Hardware Architecture
	Hardware Design Challenges
	Huge Computation Complexity and Ultra Large Memory Bandwidth
	Irregular Memory Access
	Memory Access of Interpolation and Differential Values
	Wordlength of Accumulated Values

	Proposed Hardware Architecture System
	3-Tap Filter & Subsample
	Initial Matching
	Gradient Descent with Local Memory
	Reference-Based Scheduling
	Interleaved Memory Arrangement
	Two-Stage Accumulator
	Floating-Point Matrix Processor

	Hardware Implementation Result
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

